Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

An Experimental Investigation of Dual-Fuel Combustion in a Light Duty Diesel Engine by In-Cylinder Blending of Ethanol and Diesel

2015-09-01
2015-01-1801
This study investigated dual-fuel operation with a light duty Diesel engine over a wide engine load range. Ethanol was hereby injected into the intake duct, while Diesel was injected directly into the cylinder. At low loads, high ethanol shares are critical in terms of combustion stability and emissions of unburnt hydrocarbons. As the load increases, the rates of heat release become problematic with regard to noise and mechanical stress. At higher loads, an advanced injection of Diesel was found to be beneficial in terms of combustion noise and emissions. For all tests, engine-out NOx emissions were kept within the EU-6.1 limit.
Journal Article

Nitric Oxide Measurements in the Core of Diesel Jets Using a Biofuel Blend

2015-04-14
2015-01-0597
Maintaining low NOx emissions over the operating range of diesel engines continues to be a major issue. However, optical measurements of nitric oxide (NO) are lacking particularly in the core of diesel jets, i.e. in the region of premixed combustion close to the spray axis. This is basically caused by severe attenuation of both the laser light and fluorescent emission in laser-induced fluorescence (LIF) applications. Light extinction is reduced by keeping absorption path lengths relatively short in this work, by investigating diesel jets in a combustion vessel instead of an engine. Furthermore, the NO-detection threshold is improved by conducting 1-d line measurements instead of 2-d imaging. The NO-LIF data are corrected for light attenuation by combined LIF and spontaneous Raman scattering. The quantified maximum light attenuation is significantly lower than in comparable previous works, and its wavelength dependence is surprisingly weak.
Journal Article

Mixture-Formation Analysis by PLIF in an HSDI Diesel Engine Using C8-Oxygenates as the Fuel

2015-04-14
2015-01-0960
With increasing interest in new biofuel candidates, 1-octanol and di-n-butylether (DNBE) were presented in recent studies. Although these molecular species are isomers, their properties are substantially different. In contrast to DNBE, 1-octanol is almost a gasoline-type fuel in terms of its auto-ignition quality. Thus, there are problems associated with engine start-up for neat 1-octanol. In order to find a suitable glow-plug position, mixture formation is studied in the cylinder under almost idle operating conditions in the present work. This is conducted by planar laser-induced fluorescence in a high-speed direct-injection optical diesel engine. The investigated C8-oxygenates are also significantly different in terms of their evaporation characteristics. Thus, in-cylinder mixture formation of these two species is compared in this work, allowing conclusions on combustion behavior and exhaust emissions.
Journal Article

On the Potential of Oxygenated Fuels as an Additional Degree of Freedom in the Mixture Formation in Direct Injection Diesel Engines

2015-04-14
2015-01-0890
The current and future restrictions on pollutant emissions from internal combustion engines require a holistic investigation of the abilities of alternative fuels to optimize the combustion process and ensure cleaner combustion. In this regard, the Tailor-made Fuels from Biomass (TMFB) Cluster at Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University aims at designing production processes for biofuels as well as fuels optimal for use in internal combustion engines. The TMFB Cluster's scientific approach considers the molecular structure of the fuels as an additional degree of freedom for the optimization of both the production pathways and the combustion process of such novel biofuels. Thus, the model-based specification of target parameters is of the utmost importance to improve engine combustion performance and to send feedback information to the biofuel production process.
Technical Paper

Modeling of Transport and Mixing Phenomena in Turbulent Flows in Closed Domains

2015-04-14
2015-01-0399
In this work, a transport and mixing model that calculates mixing in thermodynamic phase space was derived and validated. The mixing in thermodynamic multizone space is consistent to the one in the spatially resolved physical space. The model is developed using a turbulent channel flow as simplified domain. This physical domain of a direct numerical simulation (DNS) is divided into zones based on the quantitative value of transported scalars. Fluxes between the zones are introduced to describe mixing from the transport equation of the probability density function based on the mixing process in physical space. The mixing process of further scalars can then be carried out with these fluxes instead of solving additional transport equations. The relationship between the exchange flux in phase space and the concept of scalar dissipation are shown and validated by comparison to DNS results.
Technical Paper

Performance and Emissions of Lignin and Cellulose Based Oxygenated Fuels in a Compression-Ignition Engine

2015-04-14
2015-01-0910
Lignocellulosic biomass consists of (hemi-) cellulose and lignin. Accordingly, an integrated biorefinery will seek to valorize both streams into higher value fuels and chemicals. To this end, this study evaluated the overall combustion performance of both cellulose- and lignin derivatives, namely the high cetane number (CN) di-n-butyl ether (DnBE) and low CN anisole, respectively. Said compounds were blended both separately and together with EN590 diesel. Experiments were conducted in a single cylinder compression ignition engine, which has been optimized for improved combustion characteristics with respect to low emission levels and at the same time high fuel efficiency. The selected operating conditions have been adopted from previous “Tailor-Made Fuels from Biomass (TMFB)” work.
Journal Article

Utilization of HVO Fuel Properties in a High Efficiency Combustion System: Part 2: Relationship of Soot Characteristics with its Oxidation Behavior in DPF

2014-10-13
2014-01-2846
The present work is a continuation of the earlier published results by authors on the investigation of Hydrogenated Vegetable Oil (HVO) on a High Efficiency Diesel Combustion System (SAE Int. J. Fuels Lubr. Paper No. 2013-01-1677 and JSAE Paper No. 283-20145128). In order to further validate and interpret the previously published results of soot microstructure and its consequences on oxidation behavior, the test program was extended to analyze the impact of soot composition, optical properties, and physical properties such as size, concentration etc. on the oxidation behavior. The experiments were performed with pure HVO as well as with petroleum based diesel and today's biofuel (i.e. FAME) as baseline fuels. The soot samples for the different analyses were collected under constant engine operating conditions at indicated raw NOx emissions of Euro 6 level using closed loop combustion control methodology.
Journal Article

Probing Species Formed by Pilot Injection During Re-Compression in a Controlled Auto-Ignition Engine by H2CO LIF and Chemiluminescence Imaging

2014-04-01
2014-01-1275
Pilot injection (PI) during the negative-valve-overlap (NVO) period is one method to improve control of combustion in gasoline controlled auto-ignition engines. This is generally attributed to both chemical and thermal effects. However, there are little experimental data on active species formed by the combusting PI and their effect on main combustion in real engines. Thus, it is the objective of the current study to apply and assess optical in-cylinder diagnostics for these species. Firstly, the occurrence and nature of combustion during the NVO period is investigated by spectrally-resolved multi-species flame luminescence measurements. OH*, CH*, HCO*, CO-continuum chemiluminescence, and soot luminosity are recorded. Secondly, spectrally-, spatially-, and cycle-resolved laser-induced fluorescence measurements of formaldehyde are conducted. It is attempted to find a cycle-resolved measure of the chemical effect of PI.
Technical Paper

C8-Oxygenates for Clean Diesel Combustion

2014-04-01
2014-01-1253
Within this paper, the two possible alternative and biomass-based fuel candidates Di-n-butyl ether (DNBE) and 1-octanol are investigated with regard to their utilization in a diesel-type engine. In order to asses the fuels emission-reduction potential, both have been tested in a single cylinder engine (SCE) and a high pressure chamber (HPC) in comparison to conventional EN590 diesel at various load points. Due to its reduced reactivity 1-octanol features a longer ignition delay and thus higher degrees of homogenization at start of combustion, whereas DNBE ignites rather rapidly in both the HPC and the engine leading to a predominantly mixing controlled combustion. Thus, both fuels feature completely different combustion characteristics. However, compared to diesel, both fuels contribute to a significant reduction in Filter Smoke Number (FSN) up to a factor of 15.
Technical Paper

Optimization of Diesel Combustion and Emissions with Newly Derived Biogenic Alcohols

2013-10-14
2013-01-2690
Modern biofuels offer the potential to decrease engine out emissions while at the same time contributing to a reduction of greenhouse gases produced from individual mobility. In order to deeply investigate and improve the complete path from biofuel production to combustion, in 2007 the cluster of excellence “Tailor-Made Fuels from Biomass” was installed at RWTH Aachen University. Since then, a whole variety of possible fuel candidates have been identified and investigated. In particular oxygenated fuels (e.g. alcohols, furans) have proven to be beneficial regarding the particulate matter (PM)/ NOx trade-off [1, 2, 3] in diesel-type combustion. Alcohols that provide a longer ignition delay than diesel might behave even better with regard to this trade-off due to higher homogenization of the mixture. Recent studies carried out within the Cluster of Excellence have discovered new pathways to derive 1-octanol from biomass [4], which features a derived cetane number (DCN) of 39.
Technical Paper

Tailor-Made Fuels from Biomass: Influence of Molecular Structures on the Exhaust Gas Emissions of Compression Ignition Engines

2013-10-07
2013-36-0571
In order to deeply investigate and improve the complete path from biofuel production to combustion, the cluster of excellence “Tailor-Made Fuels from Biomass” was installed at RWTH Aachen University in 2007. Recently, new pathways have been discovered to synthesize octanol [1] and di-n-butylether (DNBE). These molecules are identical in the number of included hydrogen, oxygen and carbon atoms, but differ in the molecular structure: for octanol, the oxygen atom is at the end of the molecule, whereas for DNBE it is located in the middle. In this paper the utilization of octanol and DNBE in a state-of-the-art single cylinder diesel research engine will be discussed. The major interest has been on engine emissions (NOx, PM, HC, CO, noise) compared to conventional diesel fuel.
Journal Article

Optical Investigation of Combusting Split-Injection Diesel Sprays Under Quiescent Conditions

2013-09-08
2013-24-0034
Multiple-injection strategies are widely used in DI diesel engines. However, the interaction of the injection pulses is not yet fully understood. In this work, a split injection into a combustion vessel is studied by multiple optical imaging diagnostics. The vessel provides quiescent high-temperature, high-pressure ambient conditions. A common-rail injector which is equipped with a three-hole nozzle is used. The spray is visualized by Mie scattering. First and second stage of ignition are probed by formaldehyde laser-induced fluorescence (LIF) and OH* chemiluminescence imaging, respectively. In addition formation of soot is characterized by both laser-induced incandescence (LII) and natural luminosity imaging, showing that low-sooting conditions are established. These qualitative diagnostics yield ensemble-averaged, two-dimensional, time-resolved distributions of the corresponding quantities.
Journal Article

Optimization of Diesel Combustion and Emissions with Tailor-Made Fuels from Biomass

2013-09-08
2013-24-0059
In order to thoroughly investigate and improve the path from biofuel production to combustion, the Cluster of Excellence “Tailor-Made Fuels from Biomass” was installed at RWTH Aachen University in 2007. Since then, a variety of fuel candidates have been investigated. In particular, 2-methyl tetrahydrofurane (2-MTHF) has shown excellent performance w.r.t. the particulate (PM) / NOx trade-off [1]. Unfortunately, the long ignition delay results in increased HC-, CO- and noise emissions. To overcome this problem, the addition of di-n-butylether (DNBE, CN ∼ 100) to 2-MTHF was analyzed. By blending these two in different volumetric shares, the effects of the different mixture formation and combustion characteristics, especially on the HC-, CO- and noise emissions, have been carefully analyzed. In addition, the overall emission performance has been compared to EN590 diesel.
Journal Article

Impact of Biomass-Derived Fuels on Soot Oxidation and DPF Regeneration Behavior

2013-04-08
2013-01-1551
To comply with the new regulations on particulate matter emissions, the manufacturers of light-duty as well as heavy-duty vehicles more commonly use diesel particulate filters (DPF). The regeneration of DPF depends to a significant extent on the properties of the soot stored. Within the Cluster of Excellence "Tailor-Made Fuels from Biomass (TMFB)" at RWTH Aachen University, the Institute for Combustion Engines carried out a detailed investigation program to explore the potential of future biofuel candidates for optimized combustion systems. The experiments for particulate measurements and analysis were conducted on a EURO 6-compliant High Efficiency Diesel Combustion System (HECS) with petroleum-based diesel fuel as reference and a today's commercial biofuel (i.e., FAME) as well as a potential future biomass-derived fuel candidate (i.e., 2-MTHF/DBE). Thermo gravimetric analyzer (TGA) was used in this study to evaluate the oxidative reactivity of the soot.
Technical Paper

Optical Investigation on the Origin of Pre-Ignition in a Highly Boosted SI Engine Using Bio-Fuels

2013-04-08
2013-01-1636
Downsizing of highly-boosted spark-ignition (SI) engines is limited by pre-ignition, which may lead to extremely strong knocking and severe engine damage. Unfortunately, the concerning mechanisms are generally not yet fully understood, although several possible reasons have been suggested in previous research. The primary objective of the present paper is to investigate the influence of molecular bio-fuel structure on the locations of pre-ignition in a realistic, highly-charged SI engine at low speed by state-of-the-art optical measurements. The latter are conducted by using a high-sensitivity UV endoscope and an intensified high-speed camera. Two recently tested bio-fuels, namely tetrahydro-2-methylfuran (2-MTHF) and 2-methylfuran (2-MF), are investigated. Compared to conventional fuels, they have potential advantages in the well-to-tank balance. In addition, both neat ethanol and conventional gasoline are used as fuels.
Technical Paper

Influence of the Combination of Fuel Properties for a DI-Diesel Engine Under Partly Homogeneous Combustion

2013-04-08
2013-01-1685
Partly homogeneous combustion (PHC) can assist the reduction of the engine-out emissions but its influence is limited by using conventional diesel fuel. To verify whether alternatively designed fuels can help to improve the PHC performance, the impact of different fuel properties in combination with engine control levers have been studied. Based on single cylinder heavy duty direct injection diesel engine (DIDE) test results with different diesel and diesel-like fuels, operating under partly homogeneous combustion conditions, the impact of the combination of the fuel properties were investigated. The fuel matrix was designed such that the fuel properties varied in sufficiently large ranges, in order to be able to detect the impact of the properties at the selected operating points. A statistical principal component analysis (PCA) has been applied to the fuel matrix to specify the interrelationship between the fuel properties, as well as to derive the most independent fuel properties.
Technical Paper

Analysis of the Effects of Certain Alcohol and Furan-Based Biofuels on Controlled Auto Ignition

2012-04-16
2012-01-1135
For gasoline engines controlled autoignition provides the vision of enabling the fuel consumption benefit of stratified lean combustion systems without the drawback of additional NOx aftertreatment. In this study the potential of certain biofuels on this combustion system was assessed by single-cylinder engine investigations using the exhaust strategy "combustion chamber recirculation" (CCR). For the engine testing sweeps in the internal EGR rate with different injection strategies as well as load sweeps were performed. Of particular interest was to reveal fuel differences in the achievable maximal load as well as in the NOx emission behavior. Additionally, experiments with a shock tube and a rapid compression machine were conducted in order to determine the ignition delay times of the tested biofuels concerning controlled autoignition-relevant conditions.
Journal Article

Analysis of the Effect of Bio-Fuels on the Combustion in a Downsized DI SI Engine

2011-08-30
2011-01-1991
In this study the fuel influence of several bio-fuel candidates on homogeneous engine combustion systems with direct injection is investigated. The results reveal Ethanol and 2-Butanol as the two most knock-resistant fuels. Hence these two fuels enable the highest efficiency improvements versus RON95 fuel ranging from 3.6% - 12.7% for Ethanol as a result of a compression ratio increase of 5 units. Tetrahydro-2-methylfuran has a worse knock resistance and a decreased thermal efficiency due to the required reduction in compression ratio by 1.5 units. The enleanment capability is similar among all fuels thus they pose no improvements for homogeneous lean burn combustion systems despite a significant reduction in NOX emissions for the alcohol fuels as a consequence of lower combustion temperatures.
Technical Paper

Simulation and Optical Analysis of Oil Dilution in Diesel Regeneration Operation

2011-08-30
2011-01-1844
High levels of exhaust temperature or rich mixtures are necessary for the regeneration of today's diesel particulate filters or NOx catalysts. Therefore, late main injection or post injection is an effective strategy but leads to the well-known problem of lubricating oil dilution depending on the geometry, rail pressure and injection strategy. In this paper a method is developed to simulate fuel entrainment into the lubricating oil wall film in the diesel combustion chamber to predict oil dilution in an early design stage prior to hardware availability for durability testing. The simulation method integrates a newly developed droplet-film interaction model and is compared to results of an optical single-cylinder diesel engine and a similar thermodynamic single-cylinder test engine. Phenomena of diesel post injection like igniting early post injection or split post injections with short energizing times are considered in this paper.
Journal Article

An Experimental Investigation on the Evaporation Characteristics of a Two-Component Fuel in Diesel-Like Sprays

2011-04-12
2011-01-0688
Tailor-made multi-component fuels are currently being developed for advanced Diesel engines. Accordingly, there is renewed interest in the detailed evaporation characteristics of such multi-component fuels, in particular because soot formation in reacting Diesel sprays generally depends on the mixture formation upstream of the lift-off location. It is also well established that fuel components with different volatility are generally not coevaporative due to fractional distillation in the mixture formation process of spark-ignition engines, but it is not clear if this holds for Diesel-like sprays, in which evaporation and mixing are expected to be more rapid. Unfortunately, little work has been done in this field, and some of the previous results appear to be contradictory. This paper presents a new laser diagnostic approach, which yields the vapor-phase concentrations of two fuel components simultaneously in Diesel-like sprays.
X